

Reactivity of (Ferrocenylmethyl)phosphine toward Palladium and Platinum Chlorides. X-ray Structure of [Pd(PH2CH2Fc)Cl(*µ***-PHCH2Fc)]4 (Fc**) **Ferrocenyl), a Unique Complex Containing a Pd4P4 Cycle**

Maria Michela Dell'Anna,† Ulli Englert,*,‡ Mario Latronico,§ Pablo Lorenzo Luis,£ Piero Mastrorilli,*,† Daniela Giardina Papa,† Cosimo Francesco Nobile,† and Maurizio Peruzzini£

Dipartimento di Ingegneria delle Acque e di Chimica del Politecnico di Bari, V*ia Orabona, 4 - 70125 Bari, Italy, Institut fu¨r Anorganische Chemie der RWTH, Landoltweg 1, D-52074 Aachen, Germany, D.I.F.A. Uni*V*ersita*` *della Basilicata,* V*ia dell'Ateneo Lucano, 10 - 85100 Potenza, Italy, and Istituto di Chimica dei Composti Organometallici (ICCOM-CNR),* V*ia Madonna del Piano, 10 - 50019 Sesto Fiorentino (FI), Italy*

Received February 23, 2006

The reaction of 2 equiv of the air-stable primary phosphine (ferrocenylmethyl)phosphine (PH₂CH₂Fc, 1) with [Pd- $(cod)Cl₂$ (Fc = ferrocenyl; cod = 1,5-cyclooctadiene) at 298 K gave the phosphanido-bridged Pd(II) tetramer [Pd(PH2CH2Fc)Cl(*µ*-PHCH2Fc)]4 (**2**), which shows an unprecedented arrangement of four Pd atoms embedded in an eight-membered Pd₄P₄ ring. An X-ray diffraction study showed that 2 crystallizes in the triclinic space group \overline{PI} with a = 17.607(7) Å, b = 17.944(7) Å, c = 18.792(7) Å, α = 107.120(12)°, β = 96.344(13)°, γ = 117.087(15)°. Each molecule contains four palladium atoms in a distorted square-planar coordination formed by one chlorine and three phosphorus atoms. Two of the latter belong to bridging primary phosphanides and the remaining one is contributed by a terminal PH₂CH₂Fc ligand. The coordination environments of neighboring metal centers adopt an almost perpendicular mutual orientation. The reaction of 2 equiv of 1 with [Pt(cod)Cl₂] at 323 K yielded the analogous Pt(II) tetramer of formula $[Pt(PH_2CH_2FC)Cl(\mu$ -PHCH₂Fc)]₄ (3), which was fully characterized by multinuclear and dynamic NMR, IR, and elemental analyses. Single-crystal X-ray diffraction on **3** confirmed the tetranuclear arrangement in the solid state, but orientational disorder of the molecule precludes a more detailed discussion of the structure. Low-temperature NMR experiments in CD₂Cl₂ showed the presence of two slowly interconnecting conformers. Reaction of 1 and $[M(cod)Cl₂]$ (M $=$ Pd or Pt) at lower temperatures (273 K for Pd, 295 K for Pt) in dichloromethane allowed the detection in solution of the mononuclear species cis -[M(PH₂CH₂Fc)₂Cl₂] (M = Pd, 4; M = Pt, 5) which, upon heating, transformed into the tetramers **2** and **3**, respectively. Solid samples of **4** and **5** could be isolated after workup at low temperature and were characterized by conventional spectroscopic methods.

Introduction

Primary phosphines, PH2R, are an important class of compounds¹ which, although discovered over a century ago, have been rarely employed as ligands for the synthesis of metal complexes, 2 mostly because of their high air-sensitivity,

pyrophoricity (especially for alkyl phosphines), and toxicity. Nevertheless, the reactive character of the primary phosphines and the easy cleavage of the $P-H$ bond¹ upon metal coordination make them interesting for the preparation of transition metal complexes.

^{*} To whom correspondence should be addressed. E-mail: p.mastrorilli@poliba.it (P.M.).

[†] Dipartmento di Ingegneria delle Acque e di Chimica del Politecnico di Bari.

[‡] Institut fu¨r Anorganische Chemie der RWTH.

[§] Universita` della Basilicata. £ Istituto di Chimica dei Composti Organometallici.

⁽¹⁾ Katti, K. V.; Pillarsetty, N.; Raghuraman, K. *Topics Curr. Chem.* **2003**, *²²⁹*, 121-141. Brynda, M. *Coord. Chem. Re*V*.* **²⁰⁰⁵**, *²⁴⁹*, 2013- 2034.

⁽²⁾ For selected recent examples and leading references, see: Blanco, M. C.; Fernandez, E. J.; Olmos, M. E.; Perez, J.; Crespo, O.; Laguna, A.; Jones, P. G. *Organometallics* **2004**, 23, 4373–4381. Zhuravel, M. A.; Jones, P. G. *Organometallics* **²⁰⁰⁴**, *²³*, 4373-4381. Zhuravel, M. A.; Glueck, D. S.; Zakharov, L. N.; Rheingold, A. L. *Organometallics* **²⁰⁰²**, *²¹*, 3208-3214. Shaver, M. P.; Fryzuk, M. D. *Organometallics* **²⁰⁰⁵**, *²⁴*, 1419-1427. Felsberg, R.; Blaurock, S.; Junk, P. C.; Kirmse, R.; Voigt, A.; Hey-Hawkins, E. *Z*. *Anorg. Allg. Chem.* **2004**, *630*, $806-816$. For a review on metal-assisted P $-H$ bond-forming reactions see: Peruzzini, M.; de los Rios, I.; Romerosa, A.; Vizza, F. *Eur. J. Inorg. Chem.* **²⁰⁰¹**, 593-608.

Reactivity of (Ferrocenylmethyl)phosphine

Pioneering studies on palladium and platinum complexes of primary phosphines were carried out using cyclohexyl- (**I)**, 2-cyanoethyl- (**II)**, and phenylphosphine (**III**)3 or trimethylenediphosphine (IV) .⁴ In all cases, the reaction of 2

equiv of the organophosphorus ligand with metal chlorides gave the corresponding cis - $[L_2MCl_2]$ complexes, which underwent easy dehydrochlorination to give *µ*-phosphanidobridged dimers, such as [Pd(PH₂Cy)(*μ*-PHCy)Cl]₂,⁵ or *μ*-phosphinidene dinuclear complexes, such as $[\{Pd(PH_2Ph)_2Cl\}_2(\mu-$ PPh)].⁶ In recent years, the reactivity of sterically demanding primary phosphines such as 1-adamantylphosphine (**V**) or mesitylphosphine (**VI**) toward transition metal centers has attracted more interest due to the increased stability associated with the presence of bulky substituents. These reactions result in the formation of either mononuclear complexes of formula *cis*-[ML₂Cl₂] ($L = 1$ -adamantylphosphine⁷ or mesitylphosphine;⁸ $M = Pd$, Pt) or homoleptic metal complexes of Ni(0), Pd(II), Cu(I), and Ag(I) of general formula [ML4] *n*+ $(L = \text{mesitylphosphine}, M = Ni, n = 0; M = Pd, n = 2; M$ $=$ Cu, $n = 1$; M $=$ Ag, $n = 1$).⁹ With the exceedingly bulky PH₂Mes^{*} ligand [Mes^{*} = 2,4,6-(*t*-Bu)₃C₆H₂] the primary phosphine complexes $[ML_2Cl_2]$ (M = Pd, Pt) were isolated in the trans geometry. In contrast to *cis*- $[Pt(PH₂Mes)₂Cl₂],$ which underwent easy dehydrochlorination, these latter complexes are thermally stable in solution.8

Recently, the (ferrocenylmethyl)phosphine (**1**), a primary alkyl phosphine air stable both in the solid and solution states, has been synthesized,¹⁰ and a few molybdenum $(0)^{10a}$ and (II) ,¹¹ tungsten (II) ,^{11,12} ruthenium (II) ,^{10a,13} and rhenium (I) ¹⁴ coordination compounds have been reported. The redox-

- (3) Anand, S. P.; Goldwhite, H.; Spielman, J. R. *Transition Met. Chem.* **¹⁹⁷⁷**, *²*, 158-160.
- (4) Bianco, V. D.; Doronzo, S. *J. Organomet. Chem.* **¹⁹⁷¹**, *³⁰*, 431- 433.
- (5) Goldwhite, H.; Hirschon, A. S.; *Transition Met. Chem.* **¹⁹⁷⁷**, *²*, 144- 149.
- (6) Issleib, K.; Wilde, G. *Z. Anorg. Allg. Chem.* **¹⁹⁶¹**, *³¹²*, 287-298.
- (7) Goerlich, J. R.; Schmutzler, R. *Z. Anorg. Allg. Chem.* **¹⁹⁹⁴**, *⁶²⁰*, 898- 907.
- (8) Kourkine, I. V.; Chapman, M. B.; Glueck, D. S.; Eichele, K.; Wasylishen, R. E.; Yap, G. P. A.; Liable-Sands L. M., Rheingold A. L. Inorg. Chem. 1996, 35, 1478-1485. L. *Inorg. Chem.* **¹⁹⁹⁶**, *³⁵*, 1478-1485. (9) Kourkine, I. V.; Maslennikov, S. V.; Ditchfield, R.; Glueck, D. S.;
- Yap, G. P. A.; Liable-Sands, L. M.; Rheingold, A. L. *Inorg. Chem.* **¹⁹⁹⁶**, *³⁵*, 6708-6716.

active ferrocenyl group, presumably important in the kinetic stabilization against oxidation, has been associated with the surprisingly high stability.¹⁰

Herein, we report on the reactivity of **1** toward Pd and Pt chlorides, which led to the isolation of the novel Pd(II) and Pt(II) tetramers of formula $[M(PH_2CH_2Fe)Cl(\mu-PHCH_2Fe)]_4$ $(Fc = ferrocenyl, M = Pd, 2; M = Pt, 3)$. To the best of our knowledge, **2** and **3** are the first cyclic tetranuclear Pt(II) and Pd(II) complexes having an eight-membered M_4P_4 ring.

Experimental Section

Materials and Methods. All reactions were carried out under a pure dinitrogen atmosphere using freshly distilled and oxygen-free solvents. The (ferrocenylmethyl)phosphine $(1)^{10c}$ and the metal precursors, $[M(cod)Cl₂]$ [cod = 1,5-cyclooctadiene, M = Pd or Pt]¹⁵ and *trans*-[Pd(PhCN)₂Cl₂],¹⁶ were prepared by literature methods. Although the primary phosphine **1** is reported to be air stable in the solid state, it was stored in the dark in a Schlenk tube under nitrogen before use.

C and H analyses were carried out on a Eurovector 3000 CHN elemental analyzer; Pd and Fe analyses were performed with a Perkin-Elmer SIMA A6000 atomic absorption spectrometer after mineralization. The chloride content of the complexes was determined by argentimetric titration using a Metrohm 716 DMS Titrino. Elemental analyses of phosphorus were carried out by spectrophotometric methods using a Kontron Uvikon 942 instrument (λ = 460 nm). IR spectra were recorded on a Bruker-Vector 22 spectrometer. NMR spectra were recorded with a BRUKER Avance 400 spectrometer; frequencies are referenced to external Me₄Si (^1H) and ¹³C), 85% H₃PO₄ (³¹P), and H₂PtCl₆ (¹⁹⁵Pt). Computer simulations of the 31P{1H} experimental NMR spectra for **2** and **3** were performed using the program WINDAISY.

Synthesis of $[Pd(PH_2CH_2Fc)(\mu-PHCH_2Fc)Cl]_4$ **(2).** Solid 1 (80) mg, 0.344 mmol) was added to a CH_2Cl_2 (5 mL) solution of [Pd- $(cod)Cl₂$] (41 mg, 0.172 mmol), and the mixture was stirred at room temperature for 40 min. The resulting orange solution was concentrated to ca. 2 mL, and the orange residue was treated with $20 \text{ mL of } Et_2O$. The orange solid which separated out was isolated by filtration, washed with *n*-hexane (2×5 mL), and dried under vacuum. Yield: 88 mg (84%). Anal. Calcd for $C_{88}H_{100}Cl_4Fe_8P_8$ -Pd4: C, 43.68; H, 4.17; Cl, 5.86; Fe, 18.46; P, 10.24; Pd, 17.59. Found: C, 44.11; H, 4.14; Cl, 5.51; Fe, 17.80; P, 9.82; Pd, 18.49. mp = 453 K (dec). IR (Nujol mull, cm⁻¹): *ν* 3089 (m), 2353 (m) and 2294 (m) *^ν*(P-H), 1637 (m), 1462 (m), 1409 (m), 1233 (w), 1195 (w), 1105 (s), 1059 (w), 1038 (w), 1023 (s), 1001 (w), 923 (m), 865 (m), 817 (s), 482 (m), 274 (s) *^ν*(Pd-Cl). 31P{1H} NMR (CD2Cl2, *^δ*, 295 K, 162 MHz): -6.8 (m, *^µ*-PHCH2Fc), -34.0 (m, PH_2CH_2Fe , $^2J_{\mu P-PH2trans} = 409$ Hz, $^2J_{\mu P-PH2cis} = 5$ Hz, $^2J_{\mu P-\mu Pcis} =$

- (10) (a) Goodwin, N. J.; Henderson, W.; Nicholson, B. K.; Fawcett, J.; Russell, D. R. *J. Chem. Soc.*, *Dalton Trans.* **¹⁹⁹⁹**, 1785-1794. (b) Goodwin, N. J.; Henderson, W.; Nicholson, B. K. *J. Chem. Soc.*, *Chem. Commun.* **¹⁹⁹⁷**, *¹*, 31-32. (c) Henderson, W.; Alley, S. R. *J. Organomet. Chem.* **²⁰⁰²**, *⁶⁵⁶*, 120-128.
- (11) Sommer, R.; Lönnecke, P.; Reinhold: J.; Baker, P. K.; Hey-Hawkins, E. *Organometallics* **²⁰⁰⁵**, *²⁴*, 5256-5266.
- (12) Sommer, R.; Lönnecke, P.; Baker, P. K.; Hey-Hawkins, E. *Inorg. Chem. Commun.* **²⁰⁰²**, *⁵*, 115-118.
- (13) Paris, S. I. M.; Lemke, F. R.; Sommer, R.; Lönnecke, P.; Hey-Hawkins, E. *J. Organomet. Chem.* **²⁰⁰⁵**, *⁶⁹⁰*, 1807-1813.
- (14) Peruzzini, M.; Barbaro, P.; Bertolasi, V.; Bianchini, C.; de los Rios, I.; Mantovani, N.; Martelli, L.; Rossi, R. *Dalton Trans.* **²⁰⁰³**, 4121- 4131.
- (15) Drew, D.; Doyle, J. R. *Inorg. Synth.* **1990,** *²⁸*, 346-349.
- (16) Doyle, J. R.; Slade, P. E.; Jonassen, H. B. *Inorg. Synth.* **1960,** *²*, 218- 219.

Table 1. Crystal Data and Structure Refinement for **²**'3THF

empirical formula	$C_{100}H_{124}Cl_4Fe_8O_3P_8Pd_4$
molecular mass	2635.95
temp [K]	110(2)
wavelength [A]	0.71073
cryst syst	triclinic
space group	P ₁
$a \overrightarrow{[A]}$	17.607(7)
b [Å]	17.944(7)
c [Å]	18.792(7)
α [°]	107.120(12)
β [°]	96.344(13)
γ [°]	117.087(15)
$V[\AA^3]$	4839(3)
Z	2
D_{caled} [Mg m ⁻³]	1.809
abs coeff \lceil mm ⁻¹]	2.177
F(000)	2656
θ range for data coll [°]	$2.14 - 25.00$
reflns collected	52 647
independent reflns	16 980
data/params	16 980/569
GOF on F^2	1.145
$R1^a (I > 2\sigma(I))$	0.1246
$wR2b$ (all data)	0.2763
largest diff. peak/hole [e \AA^{-3}]	1.973 and -1.498

13 Hz. ¹H NMR (CD₂Cl₂, δ, 295 K, 400 MHz): 2.97 (m, μ -PHC*H*^cH^dFc, ²*J*_{H-H} = 14.5 Hz, ³*J*_{H-H} = 8.5 Hz, 4H), 2.78-2.90
(m) PH-C*H*-Ec, 8H), 3.36 (m) μ -PHCH^cH^dEc, ²*L*₁, μ = 14.5 Hz (m, PH₂CH₂Fc, 8H), 3.36 (m, μ -PHCH^cH^dFc, ²J_{H-H} = 14.5 Hz, ³J_{H-H} = 3.9 Hz, 4H), 3.65 (dm, μ -PHCH₂Fc, ¹J_{P-H} = 317 Hz, 4H), 4.26 (dm, PH²H^bCH₂Fc, ¹J_{P, x} = 360 Hz, 4H), 3.66 (dm, 4H), 4.26 (dm, PH^bCH_2Fc , ${}^1J_{P-H} = 360$ Hz, 4H), 3.66 (dm, $PH^aH^bCH_2Fc$, ${}^1L_{\rightarrow} = 356$ Hz, 4H), 4.10–4.44 (m, ferrocenyl PH^aH^bCH₂Fc, ¹J_{P-H} = 356 Hz, 4H), 4.10–4.44 (m, ferrocenyl
protons 72H), ¹³CJ¹HJ NMP (CD-CL, λ 295 K, 101 MHz); 88.0 protons, 72H). 13C{1H} NMR (CD2Cl2, *δ*, 295 K, 101 MHz): 88.0 (s, PH_2CH_2C) , 85.4 (d, μ -PHCH₂C, ²J_{P-C} = 6 Hz), 69.0 (Fc), 68.9 (Fc), 68.1 (Fc), 67.9 (Fc), 67.8 (Fc), 26.4 (b, PH2*C*H2), 18.3 (d, $^{1}J_{\text{P-C}} = 21$ Hz, μ -PHCH₂,).

 $a \text{ R1} = \sum ||F_{\text{o}}| - |F_{\text{c}}|/\sum |F_{\text{o}}|$. *b* wR2 = $[\sum w(F_{\text{o}}^2 - F_{\text{c}}^2)^2/\sum w(F_{\text{o}}^2)^2]^{1/2}$.

Synthesis of [Pt(PH2CH2Fc)(*µ***-PHCH2Fc)Cl]4 (3).** Solid **1** (116 mg, 0.50 mmol) was added to a toluene (5 mL) suspension of [Pt- $(cod)Cl₂$] (94 mg, 0.25 mmol), and the mixture was stirred at 323 K for 24 h to give a yellowish-orange suspension. Cooling to room temperature gave a yellowish-orange solid which was isolated by filtration and washed with *n*-hexane $(2 \times 5 \text{ mL})$ before being dried under vacuum. Yield: 156 mg (90%). Compound **3** could be obtained in 89% yield also from *trans*-[Pt(PhCN)₂Cl₂] instead of $[Pt(cod)Cl₂]$ or by heating a toluene solution of complex **5** (see below) for 24 h at 323 K. Anal. Calcd for $C_{88}H_{100}Cl_4Fe_8P_8Pt_4$: C, 38.10; H, 3.63; Cl, 5.11; P, 8.93;. Found: C, 38.15; H, 3.65; Cl, 5.04; P, 8.90. mp = 448 K (dec). IR (Nujol mull, cm⁻¹): ν 3083 (w), 2369 (m) and 2310 (w) *^ν*(P-H), 1601 (w), 1494 (m), 1405 (m), 1228 (w), 1188 (w), 1104 (s), 1059 (w), 1078 (w), 1036 (m), 1000 (m), 925 (m), 877 (m), 848 (s), 823 (s), 501 (s), 485 (m), 285 (s) ν (Pt-Cl). ³¹P NMR data are reported in Table 2 (CD₂Cl₂, δ , 295 K, 162 MHz). ¹H NMR (CD₂Cl₂, δ , 295 K, 400 MHz): 2.68 (m, PH2C*H*^e Hf Fc, 4H), 2.88 (m, PH2CHe *H*f Fc, 4H), 3.05 (m, μ -PHC*H*^cH^dFc, ² $J_{\rm H-H}$ = 14.4 Hz, ³ $J_{\rm H-H}$ = 9 Hz, 4H), 3.42 (dm, μ -PHCH-Fe ¹ $L_{\rm H}$, μ = 344 Hz, 4H), 3.47 (m, μ -PHCH- μ dEc, ² $L_{\rm H}$, μ μ -P*H*CH₂Fc, ¹*J*_{P-H} = 344 Hz, 4H), 3.47 (m, μ -PHCH^cH^dFc, ²*J*_{H-H}
= 14.4 Hz, ³*L*₂ μ = 3.2 Hz, 4H), 3.93 (dm, PH^{aHb}CH₂Fc, ¹*L*₂ μ $= 14.4$ Hz, ${}^{3}J_{\text{H-H}} = 3.2$ Hz, $4H$), 3.93 (dm, $PH^{3}H^{b}CH_{2}Fc$, ${}^{1}J_{P-H} = 360$ Hz, $4H$), 4.51 (dm, $PH^{3}H^{b}CH_{2}Fc$, ${}^{1}J_{B}$, $x = 400$ Hz, $4H$), $3.95-$ 360 Hz, 4H), 4.51 (dm, P*H*^aH^bCH₂Fc, ¹J_{P-H} = 400 Hz, 4H), 3.95-
4.55 (m, ferrocenyl protons, 72H), ¹³CJ¹H), NMP (CD-Cl, δ , 295 4.55 (m, ferrocenyl protons, 72H). ¹³C{¹H} NMR (CD₂Cl₂, δ, 295 K, 101 MHz): 87.7 (s, μ -PHCH₂C), 70.3 (s, Fc), 69.0 (s, Fc), 68.1 (s, Fc), 84.9 (s, PH2CH2*C*), 69.8 (s, Fc), 69.1 (s, Fc), 67.6 (s, Fc), 29.7 (b, PH₂CH₂), 24.0 (d, ¹J_{P-C} = 18 Hz, μ -PHCH₂). ¹⁹⁵Pt{¹H} NMR (CD₂Cl₂, δ, 295 K, 86 MHz): -4130 (m).

Synthesis of *cis***-[Pd(FcCH₂PH₂)₂Cl₂] (4).** Addition of a CH₂- Cl_2 solution (5 mL) of 1 (47 mg, 0.20 mmol) to a CH_2Cl_2 solution

 (10 mL) of *trans*- $\text{[Pd(PhCN)}_2\text{Cl}_2\text{]}$ (38.3 mg, 0.10 mmol) kept at 273 K gave a red suspension which was immediately filtered while cold. Addition of cold *n*-hexane (20 mL) to the filtrate caused the precipitation of **4** as a red solid which was isolated by filtration, washed with *n*-hexane $(2 \times 5 \text{ mL})$, and dried under vacuum at 273 K for 30 min. Yield: 32 mg (50%). IR (Nujol mull, cm-1): *ν* 2360 (w) and 2342 (w) *ν*(P-H), 248 (m) and 245 (m) *ν*(Pd-Cl). ³¹P{¹H} NMR (CD₂Cl₂, *δ*, 295 K, 162 MHz): -40.4 (s). ¹H NMR (CD2Cl2, *δ*, 295 K, 400 MHz): 3.18 (m, C*H*2, 4H), 4.40 (dt, P*H*2, $1J_{P-H} = 394$ Hz, $3J_{H-H} = 5.1$ Hz, 4H), 4.05-4.50 (m, ferrocenyl protons, 18H). 13C{1H} NMR (CD2Cl2, *δ*, 265 K, 101 MHz): 82.1 $(s, PH₂CH₂C)$, 68.3-69.2 (b, Fc), 20.8 (s, PH₂CH₂).

Synthesis of *cis***-[Pt(FcCH₂PH₂)₂Cl₂] (5). Solid 1 (233 mg, 1.0)** mmol) was added to a CH_2Cl_2 solution (15 mL) of $[Pt(cod)Cl_2]$ (187 mg, 0.50 mmol), causing the formation of a yellow solution which was stirred at room temperature for 2 h. Concentration to ca. 5.0 mL of the solution and addition of $Et₂O$ (10 mL) gave a yellow solid which was filtered off, washed with *n*-pentane (2×5) mL), and dried under vacuum. Yield 340 mg (93%). Anal. Calcd for $C_{22}H_{26}Cl_2Fe_2P_2Pt$: C, 36.19; H, 3.59; Cl, 5.11; P, 9.71; Found: C, 36.53; H, 3.61; Cl, 5.01; P, 9.68. IR (Nujol mull, cm⁻¹): 2365 (w) and 2309 (w) *^ν*(P-H), 1408 (m), 1265 (w), 1237 (w), 1105 (s), 1038 (m), 1023 (m), 1000 (m), 923 (m), 819 (s), 481 (s), 296 (m) and 285 (m) *ν*(Pt-Cl). ³¹P{¹H} NMR (CD₂Cl₂, *δ*, 295 K, 162 MHz): -51.5 (s flanked by ¹⁹⁵Pt satellites, ¹J_{P-Pt} = 3320 Hz). ¹H NMR (CD₂Cl₂, δ, 295 K, 400 MHz): 2.68 (m, CH₂, ²*J*_{P-H} = 11 Hz, ${}^{3}J_{\text{Pt-H}} = 25$ Hz, 4H), 4.38 (dt, PH₂, ${}^{1}J_{\text{P-H}} = 414$ Hz, ${}^{3}J_{\text{H-H}}$ $= 6.2$ Hz, $^{2}J_{\text{Pt-H}} = 43$ Hz, 4H), 4.00-4.45 (m, ferrocenyl protons, 18H). ¹³C{¹H} NMR (CD₂Cl₂, δ, 295 K, 101 MHz): 81.8 (s, PH₂-CH₂C), 69.2 (s, Fc), 69.1 (s, Fc), 68.6 (s, Fc), 19.4 (d, $^{1}J_{P-C} = 39$ Hz, PH₂CH₂). 195Pt{¹H} (CD₂Cl₂, *δ*, 295 K, 86 MHz): -4472 (t, ¹J_{P-Pt} = 3320 Hz).

X-ray Crystallography.¹⁷ Suitable crystals of **2** for diffraction purposes were obtained by slow diffusion of $Et₂O$ (3 mL) into a THF solution of $[Pd(PH_2CH_2Fc)(\mu-PHCH_2Fc)Cl]_4$ (1 mL) at room temperature. Crystal data, parameters for intensity data collection, and convergence results are compiled in Table 1. Data were collected with Mo K_α radiation (graphite monochromator, λ = 0.71073 Å) on a Bruker D8 goniometer with SMART CCD area detector at 110(2) K on a crystal of approximate dimensions 0.16 \times 0.04 \times 0.04 mm³. An empirical absorption correction¹⁸ (min. trans. 0.72, max. trans 0.92) was applied before averaging symmetry equivalent data $[R_(int) = 0.1238]$. The structure was solved by direct methods¹⁹ and refined with full-matrix least-squares on $F^{2,20}$ After assignment of the electron density associated with non-hydrogen atoms of the tetranuclear Pd complex, a very large void near to a crystallographic inversion center was encountered. As attempts to model the electron density to the solvent of crystallization gave unsatisfactory results, the BYPASS procedure²¹ as implemented in PLATON was used to include the contribution of the solvent to

- (18) Sheldrick, G. M. *SADABS, Program for Empirical Absorption Correction of Area Detector Data*; University of Göttingen: Göttingen, Germany, 1996.
- (19) Sheldrick, G. M. *SHELXS97*, *Program for Crystal Structure Solution*; University of Göttingen: Göttingen, Germany, 1996.
- (20) Sheldrick, G. M. *SHELXL97*, *Program for Crystal Structure Refinement*; University of Göttingen: Göttingen, Germany, 1997.
- (21) Van der Sluis, P.; Spek, A. L. *Acta Crystallogr.* **¹⁹⁹⁰**, *A46*, 194- 201.

⁽¹⁷⁾ Crystallographic data (excluding structure factors) for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC 295452. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Fax: int. code + 44(1223)336-033; E-mail: deposit@ccdc.cam.ac.uk].

Reactivity of (Ferrocenylmethyl)phosphine

Table 2. ³¹P and ¹⁹⁵Pt NMR Parameters for Complex 3 (CD₂Cl₂, 295 K)^a

^a Chemical shifts (bold) are in ppm; coupling constants (normal) are in Hz.

Figure 1. ${}^{31}P_1{}^{1}H_1$ (a) and proton-coupled ${}^{31}P$ (b) NMR spectra of **2** (CD₂Cl₂, 295 K, 162 MHz).

the overall structure factors. The volume of 600 \AA ³ and the electron count of 240 associated with the void suggests that it contains six molecules of tetrahydrofuran. The crystal data in Table 1 therefore refer to a composition of **²**'3THF.

Repeated single-crystal diffraction experiments on **3** confirmed that the compound crystallizes in the tetragonal space group *^P*4h with lattice parameters $a = 13.1576(6)$ Å, $c = 14.6717(2)$ Å, $V =$ 2540.00(17) \AA^3 with one molecule per unit cell. We note that the core of the analogous Pd compound, **2**, also shows local, noncrystallographic $\frac{1}{4}$ point group symmetry. The phase problem was readily solved, but an approximate 3:1 orientational disorder prevented us from refining a meaningful structure model.

Results and Discussion

Reactivity of 1 with Pd(II) Chloro Complexes. The reaction of 2.0 equiv of 1 with $[Pd(cod)Cl₂]$ at 298 K in CH_2Cl_2 (or THF) gave an orange solid whose ${}^{31}P{^1H}$ NMR spectrum shows a second-order spin system with resonances centered at δ -34.0 and -6.8 (Figure 1a). In the protoncoupled 31P NMR spectrum, these signals split into a pseudoquartet and a doublet of doublets, respectively (Figure 1b), indicating that this compound contains equimolar amounts of $PH₂$ and PH moieties.

The elemental analyses provided a Pd/P/Cl ratio of 1:2:1, which indicates the occurrance of dehydrochlorination and suggests, in agreement with the 31P NMR spectra, the formation of a polynuclear complex of formula $[Pd(PH₂CH₂ Fc)(\mu$ -PHCH₂Fc)Cl]_{*n*} (*n* > 2).

A single-crystal diffraction study allowed us to assign the structure $[Pd(PH_2CH_2Fc)(\mu-PHCH_2Fc)Cl]_4$ (2) to the product. The high nuclearity of **2** is worth noticing, since in all the known cases, dehydrohalogenation from primary (and secondary) phosphine Pd(II) complexes led to dinuclear compounds.5,6,8,22

The structure of **2**, together with the atom labeling scheme, is shown in Figure 2.

Complex **2** exhibits a tetrametallic unit and can be regarded as formed by four (noncoplanar) mononuclear palladium subunits held together by bridging μ -PHCH₂Fc groups. The $[Pd(PH_2CH_2Fc)(\mu-PHCH_2Fc)Cl]$ subunits of the molecule are approximately related by an *S*⁴ operator. The metal environ-

Figure 2. ORTEP drawing of **2**. The solvent molecules and hydrogen atoms have been omitted for clarity; displacement ellipsoids are scaled to 50% probability. Selected bond lengths (A) and angles (deg) : $Pd(1)-P(1)$ 2.283(4), Pd(1)-P(8) 2.338(4), Pd(1)-P(4) 2.346(4), Pd(1)-Cl(1) 2.379- (4), Pd(1)-Pd(3) 3.173(2), Pd(2)-Pd(4) 3.1206(18), Pd(2)-P(1) 2.331- (4) , P(1)-Pd(1)-P(8) 91.23(15), P(1)-Pd(1)-P(4) 85.25(14), P(8)-Pd(1)- $Cl(1)$ 88.86(14), P(4)-Pd(1)-Cl(1) 94.60(14), P(1)-Pd(1)-Pd(3) 85.06(12), $P(8)$ -Pd(1)-Pd(3) 88.92(12), P(4)-Pd(1)-P(3) 95.15(11), Cl(1)-Pd(1)-Pd(3) 95.69(12), Pd(1)-P(1)-Pd(2) 120.92(18).

Scheme 1. Core of 2 Showing the Perpendicular Arrangement of the Coordination Planes around Pd Atoms

ments form alternate, almost perpendicular, planes, subtending angles of 89.4(2)°, 84.8(2)°, 90.0(2)°, and 85.63(19)° (Scheme 1). The distorted square-planar environment of each palladium atom comprises a (ferrocenylmethyl)phosphine group, two mutually cis (ferrocenylmethyl)phosphanido ligands bridging to two different adjacent metal centers, and a chlorine ligand (cis to the terminal phosphine). The angles around the metal are close to 90°, with significantly smaller μ P-Pd- μ P angle of 85°. Each phosphanide moiety bridges two palladium atoms and has a chlorine ligand in a trans position with respect to the first Pd (the cis position is occupied by a terminal primary phosphine) and a terminal primary phosphine in a trans position with respect to the other Pd (the cis position is occupied by a chlorine). The $P(1)$ -Pd(1), $P(2)$ -Pd(2), $P(3)$ -Pd(3), and $P(4)$ -Pd(4) bond distances are slightly shorter than $P(1)-Pd(2)$, $P(2)-Pd(3)$, $P(3)$ -Pd(4), and P(4)-Pd(1), as expected on the basis of the different trans influence between the phosphine and the chlorine atom. The large Pd-*µ*P-Pd angles (ca. 120°) are consistent with the lack of a metal-metal bond between

adjacent palladium atoms. 23 The nonbonding intermetallic distances $Pd(1)\cdots Pd(3)$ and $Pd(2)\cdots Pd(4)$ [3.173(4) and 3.1206(18) Å, respectively] are long enough to preclude the possibility of metal-metal interaction between interfacing palladium atoms.

The IR spectrum of **²** showed P-H stretchings at 2353 and 2294 cm⁻¹ and a Pd-Cl stretching band at 274 cm⁻¹.
The signals of the ³¹PLHJ NMR spectrum described above The signals of the ${}^{31}P{^1H}$ NMR spectrum described above can be easily attributed to the coordinated (ferrocenylmethyl) phosphines (δ -34.0) and to the bridging phosphanides (δ -6.8). The large value of the ² $J_{P-P} = 409$ Hz is typical for counting between trans P atoms. Additional ² I_{B} a countings coupling between trans P atoms. Additional $^{2}J_{\text{P-P}}$ couplings between cis phosphorus atoms (13 and 5 Hz) could be assessed by computer simulation of the experimental spectrum.

The chemical shift of the low-field resonance signal ascribed to the phosphanido groups is consistent with a system containing single phosphanido bridging ligands that support nonbonded metal centers 24 and appears at much lower field than the resonances exhibited by phosphanido ligands involved in P_2M_2 four-membered rings.²⁵ The ¹H NMR spectrum of **2** showed the expected signals for ferrocenyl, methylene, and P-H hydrogens, but a full assignment of the ¹H NMR features was achieved only by a perusal of a series of NMR experiments including ${}^{1}H-{}^{1}H$
COSY ${}^{1}HJ^{3}P$ (at 295 and at 270 K) and ${}^{3}P-{}^{1}H$ HMOC $\text{COSY}, \, ^1\text{H} \{^{31} \text{P}\}$ (at 295 and at 270 K), and $^{31} \text{P} - ^1\text{H HMQC}$.
The spectroscopic data are consistent with the solid-state The spectroscopic data are consistent with the solid-state geometry and point out that each bridging phosphanido P atom is bound, apart the hydrogen and the ferrocenylmethyl moiety, to two palladium centers, one with a trans-disposed chlorine and the other with a trans-arranged terminal phosphine. Inspection of the ${}^{31}P-{}^{1}H$ HMQC NMR spectrum of 2 . (Figure 3) suggests that the PH, protons of the terminal **2** (Figure 3) suggests that the PH_2 protons of the terminal phosphines are diastereotopic (PH^aH^bCH₂Fc, $\delta_{\text{H}}^{\text{a}} = 4.26$, $J_{P-H}^a = 360 \text{ Hz}; \ \delta_H^b = 3.66, \ ^1J_{P-H}^b = 356 \text{ Hz}.$

⁽²²⁾ Giannandrea, R.; Mastrorilli, P.; Nobile, C. F. *Inorg. Chim. Acta* **1999**, *²⁸⁴*, 116-118. Gallo, V.; Latronico, M.; Mastrorilli, P.; Nobile, C. F.; Suranna, G. P.; Ciccarella, G.; Englert, U. *Eur. J. Inorg. Chem.* **²⁰⁰⁵**, 4607-4616. Carty, A. J.; Hartstock, F.; Taylor, N. J. *Inorg. Chem.* **¹⁹⁸²**, *²¹*, 1349-1354. Brandon, J. B.; Dixon, K. R. *Can. J. Chem.* **¹⁹⁸¹**, *⁵⁹*, 1188-1200.

⁽²³⁾ Alonso, E.; Forniés, J.; Fortuño, C.; Martín, A.; Rosair, G. M.; Welch, A. J. *Inorg. Chem.* **¹⁹⁹⁷**, *³⁶*, 4426-4431 and references therein.

⁽²⁴⁾ Alonso, E.; Forniés, J.; Fortuño, C.; Martín, A.; Orpen, A. G.; *Organometallics* **2003**, 22, 2723–2728. Alonso, E.; Forniés, J.; Forniés, J.; Forniés, J.; *Comparenting* A. G. *Creanometallics* **2000**, 19 Fortuño, C.; Martín, A.; Orpen, A. G. Organometallics 2000, 19, ²⁶⁹⁰-2697.

⁽²⁵⁾ Carty, A. J.; Maclaughlin, S. A.; Nucciarone, D. *Phosphorus-31 NMR Spectroscopy in Stereochemical Analysis*; Verkade, J. G., Quin, L. D., Eds.; VCH: New York, 1987; p 559.

Figure 4. 1H{31P} NMR spectra of **2** (methylene region) recorded at 295 (top) and 270 K (bottom).

Scheme 2. Synthesis of **4** and **5**

Diasterotopic pairs are also observed for the methylene protons of both the terminal phosphines and the bridging phosphanides. Noticeably, while the $CH₂$ protons of the bridging phosphanides give rise to well-separated doublets of doublets at 295 K in the ${}^{1}H{^{31}P}$ NMR spectrum $(\mu$ -PHC*H^cH^d*Fc, $\delta_{\text{H}}^{\text{c}} = 2.97$, $\delta_{\text{H}}^{\text{d}} = 3.36$, $^2J_{\text{H}}^{\text{c}}$ - $_{\text{H}}^{\text{d}} = 14.5$ Hz,
 3L , $^{\text{c}}$ $_{\text{w}} = 8.5$ Hz, 3L , $^{\text{d}}$ $_{\text{w}} = 3.9$ Hz, Figure 4), a good J_{H}^{c} -_H = 8.5 Hz; $^{3}J_{\text{H}}^{\text{d}}$ -_H = 3.9 Hz, Figure 4), a good separation of the methylenic protons of the terminal phosphines is evident in the ¹H{³¹P} NMR spectrum recorded at 270 K (PH^aH^bC*H^eH^IFc*, $\delta_{\text{H}^e} = 2.74$ and $\delta_{\text{H}^f} = 2.76$ at 270 K Figure 4) K, Figure 4).

Monitoring the reaction between 1 and $[Pd(cod)Cl₂]$ by $31P$ VT-NMR (CD₂Cl₂, 180 K) showed the immediate formation of **4** (singlet at δ -31) together with a series of minor products which denied a simple analysis and, similarly to **4**, disappear on heating the solution to room temperature when 2 became the only observable compound.²⁶ Likely, the monomer **4** is first formed in the reaction of **1** with [Pd- $(c \text{od})\text{Cl}_2$] before transforming into the tetramer 2. Attempts to isolate **4** from the reaction of **1** and $[Pd(cod)Cl₂]$ at low temperature were unsuccessful. However, pure **4** (albeit in low yield) could be isolated from the reaction between **1** and *trans*-[Pd(PhCN)₂Cl₂] at 273 K in CH₂Cl₂ (Scheme 2a). The mononuclear complex **4** was stable below 273 K in the solid state but, once dissolved in CH_2Cl_2 , quickly transformed into the tetramer **2** passing through a mixture of species similar to those observed in the in situ NMR experiment. The ${}^{31}P{}^{1}H$ } NMR spectrum at 295 K recorded immediately after dissolution in CH₂Cl₂ showed a sharp singlet at δ -40.4 $(\delta - 31$ at 180 K), which split into a triplet $({}^1J_{\rm P-H} = 394$
Hz) in the proton-coupled spectrum indicating a negligible Hz) in the proton-coupled spectrum, indicating a negligible ${}^{2}J_{\text{P-P}}$ ²⁷ These features suggest for **4** a cis geometry which

was confirmed by the observation of two medium-intensity Pd-Cl stretching bands in the IR spectrum ($v_{\text{Pd-Cl}} = 245$ and 248 cm⁻¹).²⁸ In keeping with this structural assignment, the ¹ H NMR spectrum of **4** showed three signals in a 2:2:9 ratio, ascribable to the PH_2 protons (δ 4.40, dt), to the methylene protons $(\delta$ 3.18, m), and to the ferrocenyl hydrogens (δ 4.05 to 4.50), respectively.

The low yield of **4** from reaction between **1** and *trans*- $[Pd(PhCN)_2Cl_2]$ at 273 K was due to the concomitant formation of a brown precipitate insoluble in all common organic solvents. Presumably, the very unstable *trans*-[Pd- $(FcCH₂PH₂)₂Cl₂$] which first forms can partly isomerize to cis -[Pd(FcCH₂PH₂)₂Cl₂], (isolable after workup at about 273 K) and partly oligomerize to other insoluble compounds. which were not further characterized.

Reactivity of 1 with Pt(II) Chloro Complexes. The 2:1 reaction²⁹ of 1 with [Pt(cod)Cl₂] at 298 K in CH₂Cl₂ (Scheme 2b) gave a yellow solution from which a yellow solid could be isolated. This showed in the ${}^{31}P{^1H}$ NMR spectrum a sharp singlet at δ -51.5 flanked by ¹⁹⁵Pt satellites (¹*J*_{P-Pt} = 3320 Hz). The value of the Pt-P coupling constant ³⁰ the 3320 Hz). The value of the Pt-P coupling constant, 30 the triplet splitting of the 31P NMR signal in the proton coupled spectrum ($^{1}J_{P-H}$ = 414 Hz), and the two IR stretching Pt-
Cl bands (v_{max} = 285 and 296 cm⁻¹) taken altogether allow Cl bands $(v_{\text{Pt}-\text{Cl}} = 285 \text{ and } 296 \text{ cm}^{-1})$, taken altogether, allow
us to assign to this vellow compound the formula *cis-*[Ptus to assign to this yellow compound the formula *cis*-[Pt- $(FCCH₂PH₂)₂Cl₂]$ (**5**). The ¹H NMR spectrum of **5** in CD₂-Cl₂ showed signals for PH₂ and CH₂ at δ 4.38 and 2.68, respectively, while the $^{195}Pt{^1H}$ NMR spectrum consisted of a triplet centered at δ -4472. Complex 5 was more stable than its Pd analogue **4**, remaining unaltered in solution at room temperature for at least 1 day. ³¹

Heating a toluene solution of **5** at 323 K for 24 h afforded the tetranuclear Pt(II) complex **3**, i.e., the Pt analogue of **2**. Complex **3** is a yellowish-orange solid insoluble in aromatic solvents but moderately soluble in halogenated solvents. This compound could be straightforwardly synthesized in high yield by reacting 2 equiv of 1 with either $[Pt(cod)Cl₂]$ or *trans*- $[Pt(PhCN)_2Cl_2]$ at 323 K in toluene (Scheme 3).

Although a crystallographic study confirmed that **3** shares with 2 an identical M_4P_4 core, we do not give here any structural detail because of extensive disorder. In keeping

⁽²⁶⁾ Although a sound structural assignment of the minor species present in solution at low temperature is difficult, it is conceivable that these resonances are due to oligomeric palladium complexes traversing the formation of the tetramer **2**.

⁽²⁷⁾ A^2J_{P-P} of hundreds of Hertz, typical for trans couplings, would have given rise to a complicated second-order spectrum. See Palmer, R. A.; Whitcomb, D. R. *J. Magn. Res.* **¹⁹⁸⁰**, 39, 371-379.

⁽²⁸⁾ Nakamoto, K. *Infrared and Raman Spectra*, 4th ed.; Wiley: New York, 1986; pp 326-327.

⁽²⁹⁾ Using a P/Pt molar ratio higher than 2:1, a fast equilibrium between the bis(phosphine) complex and the cationic tris(phosphine) complex took place, as revealed by a very broad ${}^{31}P{^1H}$ NMR signal at about δ -35. A similar exchange process has been observed between L₂- MX_2 complexes $(X = CI, Br; M = Pt, Pd; L = primary phosphate$ containing phenyl, cyclohexyl, or 2-cyanoethyl groups) and L ligand giving the cationic complex $[L₃MX⁺]X⁻$. See: Anand, S. P.; Goldwhite, H.; Spielman, J. R. *Transition Met. Chem.* **¹⁹⁷⁷**, *²*, 158-160.

⁽³⁰⁾ Pregosin, P. S.; Kunz, R. W. *31P and 13C NMR of Transition Metal Phosphine Complexes*; Springler-Verlag: New York, 1979; Vol. 16, p 94.

⁽³¹⁾ Prolonged drying of compound **5** should be avoided in order to prevent dehydroalogenation in the solid state.

Figure 5. Experimental (a) and simulated (b) ${}^{31}P{^1H}$ NMR spectra of complex **3**.

with the rough crystallographic analysis and the tetrametallic structural motif, the IR spectrum of **3** in the solid state showed P-H stretchings at 2369 and 2310 cm⁻¹ and a Pt-Cl stretching at 285 cm^{-1} . The ³¹P{¹H} NMR spectrum of 3 is shown in Figure 5a. The seemingly complicated spectrum contains signals arising from a mixture of five isotopomers differing for the number of NMR-active 195Pt nuclei incorporated in the tetrametallic core, i.e., with zero (18.97%, **A**), one (39.10%, **B**), two (30.21%, **C**), three (10.38%, **D**), and four (1.37%, **E**) 195Pt nuclei. The isotopomer **A** contains 66% of total ³¹P and gives two mutually coupled doublets $(^{2}J_{\text{P-Prans}})$ $=$ 389 Hz) centered at δ -37.2 and -29.5 which are assigned to the bridging phosphanido ligands and to the terminal primary phosphines, respectively. Recording of the proton-coupled 31P NMR spectrum, transforming the doublet at δ -37.2 into a doublet of doublets (${}^{1}J_{P-H}$ = 344 Hz) and the doublet at δ -29.5 into a pseudoquartet, confirms this the doublet at δ -29.5 into a pseudoquartet, confirms this assignment. The chemical shift ascribed to the ^{31}P phosphanides P atoms is again consistent with single phosphanido bridging ligands supporting nonbonded metal centers.²⁴ The high-field shift of this signal with respect to **2** is consistent with the trend observed for μ -phosphanido P atoms on going down in a transition metal triad.³² The PH₂ doublet at δ -29.5 is flanked by one set of 195 Pt satellites due to the isotopomer **B** (${}^{1}J_{P-Pt}$ = 2240 Hz), whereas the doublet at δ -37.2, ascribed to the bridging phosphanido ligands, shows -37.2 , ascribed to the bridging phosphanido ligands, shows two sets of ¹⁹⁵Pt satellites, indicating the magnetic inequivalence of the two Pt atoms bridged by each phosphanide. In fact, assuming for **3** the same structure of **2**, one Pt bears a terminal phosphine trans to *µ*-PH, while the other Pt bears a Cl trans to the same μ -PH (see Table 2). The corresponding

 $^{1}J_{P-Pt}$ are 2322 (P trans P) and 2496 Hz (P trans Cl), respectively, reflecting the different trans influence between phosphine and Cl.33 Finally, the phosphanide part of the spectrum shows additional peaks flanking the central doublet due to three bonds phosphorus-platinum couplings $(^3J_{P-Pt} \approx 120 \text{ Hz})$ \approx 120 Hz).

The 31P NMR features of the isotopomers **A**, **B**, and **C** of **3** were calculated by iterative simulation of the experimental spectra (Table 2). Figure 5b shows a comparison between experimental and simulated spectra and stresses the validity of the simulation procedure.³⁴

Similar to 2 , the PH_2 protons of the terminal phosphines in **3** (PH^aH^bCH₂Fc, $\delta_{\text{H}}{}^{\text{a}} = 4.51$, ${}^{\text{J}}J_{\text{P-H}}{}^{\text{a}} = 400$ Hz; $\delta_{\text{H}}{}^{\text{b}} =$
3.93, ${}^{\text{J}}L_{\text{a}}{}_{\text{c}}{}^{\text{b}} = 360$ Hz), the methylene protons of both the 3.93, $1J_{P-H}$ ^b = 360 Hz), the methylene protons of both the terminal phosphines (PH-CH^eH/E_C) δ_{CP} = 2.68 and δ_{CP} ^f = terminal phosphines (PH₂CH^eH^FC, δ_{H} ^e = 2.68 and δ_{H} ^f = 2.88) and the bridging phophanido groups (*u*-PHCH^eH^dEc 2.88), and the bridging phophanido groups (μ -PHC*H^cH*^dFc, $\delta_{\text{H}^c} = 3.05, \,^2 J_{\text{H}^c-\text{H}^d} = 14.4 \text{ Hz}, \,^3 J_{\text{H}^c-\text{H}} = 9 \text{ Hz}; \, \delta_{\text{H}^d} = 3.47,$
 $\delta_{\text{L}^d-\text{H}^d} = 3.2 \text{ Hz}$ are diastereotopic J_{H}^{d} _{-H} = 3.2 Hz) are diastereotopic.

Inspection of Figure 5a shows that the 31P{¹ H} NMR peaks of **3** are quite broad, indicating a fluxional behavior at room temperature. On lowering the temperature down to 180 K (Figure 6), four pairs of partially overlapped mutually coupled doublets, as indicated by the COSY ³¹P-³¹P NMR spectrum, became evident. Medium-size rings are known to give rise to conformational equilibria which were studied, for instance, in the case of seven- and eight-membered heterocycles.³⁵ In our case, we may envisage an equilibrium between a boat-boat conformation (as found in the solidstate structure) and a boat-chair conformation, as depicted in Scheme 4. At room temperature, the equilibrium is fast and results in the observed average broad spectrum.

Changing the conformation from boat-boat to boat-chair results in the loss of magnetic equivalency for both phosphanide and phosphine ligands so that in the slow exchange regime, when the boat-boat and boat-chair conformers are slowly interconverting, complex **3** should exhibit five pairs of mutually coupled doublets (one for the boat-boat and four for the boat-chair conformer) in the ${}^{31}P{^1H}$ NMR spectrum. The observation at 180 K of only four pairs of doublets may be likely attributed to the fortuitous overlapping of two of the five couples of doublets.36

In the case of the palladium tetramer **2**, lowering the temperature down to 180 K did not result in any new signal attributable to "frozen" conformers, presumably due to faster equilibration.

Coordination compounds containing M4P4 cores have many precedents in the literature. Apart from a few clusters

⁽³²⁾ Barre`, C.; Boudot, P.; Kubicki, M. M.; Moı¨se, C. *Inorg. Chem.* **1995**, *³⁴*, 284-291.

⁽³³⁾ Hartley, F. R. *Chem. Soc. Re*V*.* **¹⁹⁷³**, *²*, 163-179.

⁽³⁴⁾ The peaks observed in addition to those accounted for in the simulated spectrum may be attributed to the 10.4% and 1.4% of molecules containing three and four magnetically active platinums, respectively.

⁽³⁵⁾ Pastor, S. D.; Smith, A. R.; Rihs, G. *Phosphorus Sulfur Silicon Relat. Elem*. **¹⁹⁹⁶**, *¹¹⁵*, 169-177.

⁽³⁶⁾ 31P{1H} NMR NOESY-EXSY experiments carried out at 180 K were not decisive in confirming the existence of the conformational equilibrium since no clear exchange cross-peaks could be assigned. The major problem of these experiments was the shortness of the FID (ca. 30 ms) that forced us to use mixing times shorter than 20 ms, a time possibly insufficient to warrant the envisaged exchange to occur.

where at least two metals are covalently bonded,³⁷ the most frequent geometries deal with species containing the M_4P_4 array embedded in planar ($M = Hg₁³⁸ Cu₁³⁹ Ag₄₀$) or butterfly-like ($M = Au^{41}$) rings or in polyhedra exhibiting more or less distorted heterocubane topologies ($M = In, 42$) Al,⁴³ Rb, Ce,⁴⁴ Mg, Ca, Sr, Ba, Sn,⁴⁵ Scheme 5).

Distorted tetraphosphatetrametalla cubanes involving transition metals are much more rare and, to the best of our knowledge, are limited to the two derivatives $\frac{C_p^*M(\mu_3 - \mu_4)}{C_p^*M(\mu_3 - \mu_4)}$ P }₄] (M = Co, Ni) prepared by Dahl and co-workers by thermal reaction of white phosphorus with appropriate metal cyclopentadienyl precursors⁴⁶ and to the heterotetranuclear cluster $[\{Cp''Ru\}_3\{Cp*Fe\}(\mu_3-P)\}_4]$ obtained by co-thermolysis of $[Cp*Fe(\eta^5-P_5)]$ and $[\{Cp''(CO)_2Ru\}_2]$ ($Cp''=1,3-$

- (37) Braunstein, P.; Matt, D.; Bars, O.; Louër, M.; Grandjean, D.; Fischer, J.; Mitschler, A. *J. Organomet. Chem.* **¹⁹⁸¹**, *²¹³*, 79-107.
- (38) Eichbichler, J.; Peringer, P. *J. Chem. Soc.*, *Chem. Commun.* **1982**, ¹⁹³-194. (39) Cowley, A. H.; Giolando, D. M.; Jones, R. A.; Nunn, C. M.; Power,
- J. M. *J. Chem. Soc.*, *Chem. Commun.* **1988**, 208-209. Eichhöfer, A.; Fenske, D.; Holstein, W. *Angew. Chem.*, *Int. Ed. Engl.* **¹⁹⁹³**, *³²*, 242- 245.
- (40) Eichho¨fer, A.; Eisenmann, J.; Fenske, D.; Simon, F. *Z. Anorg. Allg. Chem.* **¹⁹⁹³**, *⁶¹⁹*, 1360-1368.
- (41) Stefanescu, D. M.; Yuen, H. F.; Glueck, D. S.; Golen, J. A.; Rheingold A. L. *Angew. Chem.*, *Int. Ed.* **²⁰⁰³**, *⁴²*, 1046-1048. Stefanescu, D. M.; Yuen, H. F.; Glueck, D. S.; Golen, J. A.; Zakharov, L. N.; Incarvito, C. D.; Rheingold, A. L. *Inorg. Chem.* **²⁰⁰³**, *⁴²*, 8891- 8901.
- (42) Werner, B.; Neumu¨ller, B. *Organometallics* **¹⁹⁹⁶**, *¹⁵*, 4258-4263. Von Hänisch, C.; Rolli, B. Z. Anorg. Allg. Chem. 2002, 628, 2255-2258.
- (43) Cowley, A. H.; Jones, R. A.; Mardones, M. A.; Atwood, J. L.; Bott, S. G. *Angew. Chem.*, *Int. Ed. Engl.* **¹⁹⁹⁰**, *²⁹*, 1409-1410.
- (44) Westerhausen, M.; Weinrich, S.; Schmid, B.; Schneiderbauer, S.; Suter, M.; No¨th, H.; Piotrowski, H. *Z. Anorg. Allg. Chem.* **²⁰⁰³**, *⁶²⁹*, 625- 633.
- (45) Westerhausen, M.; Schneiderbauer, S.; Knizek, J.; Nöth, H.; Pfitzner, A. *Eur. J. Inorg. Chem.* **¹⁹⁹⁹**, 2215-2220.
- (46) M) Co: Simon, G. L.; Dahl, L. F. *J. Am. Chem. Soc.* **¹⁹⁷³**, *⁹⁵*, $2175-2183$. $M = Ni$: Goh, L. Y.; Chu, C. K.; Wong, R. C. S.; Hambley, T. W. *J. Chem. Soc.*, *Dalton Trans.* **¹⁹⁸⁹**, 1951-1956.

t Bu2Cp).47 Tetranuclear platinum compounds featuring a Pt4P4 motif are extremely rare, being represented only by the spheroidal polyhydridotetraplatinum clusters [Pt₄H₂(P'Bu₃)₄] and Pt₄H₈[PPh^{*i*}Pr₂]₄.⁴⁸ No similar palladium polyhydrido cluster has been reported so that a Pd_4P_4 moiety may be recognized only in the ternary palladium phosphide $Nb₅Pd₄P₄$ prepared by arc-melting of metallic palladium with NbP.⁴⁹ Therefore, the peculiar arrangement of four metals and four phosphorus donor atoms ascertained for **2** and **3** in both the solid and solution states has no precedent in eight-membered M4P4 rings and cages, and likely its formation stands on steric reasons favored by the relatively small encumbrance exerted by the (ferrocenylmethyl)phosphine coligands.

Conclusions

In contrast to the known halide primary phosphine complexes which dehydrohalogenate to dimeric species, the mononuclear chloride (ferrocenylmethyl)phosphine Pd(II) and Pt(II) complexes, which are first formed in the reaction between Pd(II) or Pt(II) chlorides and **1**, easily transform into tetranuclear species of formula $[M(PH₂CH₂FC)(\mu-$ PHCH₂Fc)Cl₁₄ (M = Pd, 2; M = Pt, 3). Both complexes adopt in the solid state the monocyclic arrangement with a M_4P_4 core, as authenticated by X-ray crystallopgraphy. In solution, the two tetrametallic complexes exhibit a fluxional behavior with several conformers interconverting on the NMR time scale. The exchange process was slowed at low temperature for the Pt(II) complex, providing evidence for a boat-boat to boat-chair equilibration, but not for the Pd(II) tetramer which shows fast exchange even at low temperature.

⁽⁴⁷⁾ Koch, B.; Scherer, O. J.; Wolmershäuser, G. *Z. Anorg. Allg. Chem.* 2000, 626, 1797-1802. **²⁰⁰⁰**, *⁶²⁶*, 1797-1802. (48) Frost, P. W.; Howard, J. A. K.; Spencer, J. L.; Turner, D. G.; Gregson

D. *J. Chem. Soc.*, *Chem. Commun.* **¹⁹⁸¹**, 1104-1106.

⁽⁴⁹⁾ Wang, M.; McDonald, R.; Mar, A. *Inorg. Chem.* **²⁰⁰⁰**, *³⁹*, 4936- 4941.

Acknowledgment. M.P. thanks the project FIRENZE HYDROLAB sponsored by ECRF for supporting this research activity. MIUR and CE (PRIN and FESR funds) are gratefully acknowledged for financial support.

Supporting Information Available: ¹H-¹H COSY NMR of **²**; 31P{1H} DNMR and 31P-31P COSY NMR spectra of the reaction mixture: $[Pd(cod)Cl₂] + 2$ equiv **1**; ¹H $-$ ³¹P HMQC, ¹H $-$ ¹H COSY, and LT 31P-31P COSY NMR spectra of **³**; atomic coordinates, equivalent isotropic displacement parameters, bond lengths and angles, hydrogen coordinates and isotropic displacement parameters, and anisotropic displacement parameters for **2**. This material is available free of charge via the Internet at http://pubs.acs.org.

IC060311W